Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

MOZART, a global chemical transport model for ozone and related chemical tracers.2. Model results and evaluation

Identifieur interne : 000254 ( PascalFrancis/Corpus ); précédent : 000253; suivant : 000255

MOZART, a global chemical transport model for ozone and related chemical tracers.2. Model results and evaluation

Auteurs : D. A. Hauglustaine ; G. P. Brasseur ; S. Walters ; P. J. Rasch ; J.-F. Müller ; L. K. Emmons ; M. A. Carroll

Source :

RBID : Pascal:99-0064510

Descripteurs français

English descriptors

Abstract

In this second of two companion papers, we present results from a new global three-dimensional chemical transport model, called MOZART (model for ozone and related chemical tracers). MOZART is developed in the framework of the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM) and includes a detailed representation of tropospheric chemistry. The model provides the distribution of 56 chemical species at a spatial resolution of 2.8° in both latitude and longitude, with 25 levels in the vertical (from the surface to level of 3 mbar) and a time step of 20 min. The meteorological information is supplied from a 2-year run of the NCAR Community Climate Model. The simulated distributions of ozone (O3) and its precursors are evaluated by comparison with observational data. The distribution of methane, nonmethane hydrocarbons (NMHCs), and CO are generally well simulated by the model. The model evaluation in the tropics stresses the need for a better representation of biomass burning emissions in order to evaluate the budget of carbon monoxide, nitrogen species, and ozone with more accuracy in these regions. MOZART reproduces the NO observations in most parts of the troposphere. Nitric acid, however, is overestimated over the Pacific by up to a factor of 10 and over continental regions by a factor of 2-3. Discrepancies are also found in the simulation of PAN in the upper troposphere and in biomass burning regions. These results highlight shortcomings in our understanding of the nitrogen budget in the troposphere. The seasonal cycle of ozone in the troposphere is generally well reproduced by the model in comparison with ozone soundings. MOZART tends, however, to underestimate O3 at higher latitudes, and specifically above 300 mbar. The global photochemical production and destruction of ozone in the troposphere are 3018 Tg/yr and 2511 Tg/yr, respectively (net ozone production of 507 Tg/yr). The stratospheric influx of O3 is estimated to be 391 Tg/yr and the surface dry deposition 898 Tg/yr. The calculated global lifetime of methane is 9.9 years in the annual average.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 103
A06       @2 D21
A08 01  1  ENG  @1 MOZART, a global chemical transport model for ozone and related chemical tracers.2. Model results and evaluation
A11 01  1    @1 HAUGLUSTAINE (D. A.)
A11 02  1    @1 BRASSEUR (G. P.)
A11 03  1    @1 WALTERS (S.)
A11 04  1    @1 RASCH (P. J.)
A11 05  1    @1 MÜLLER (J.-F.)
A11 06  1    @1 EMMONS (L. K.)
A11 07  1    @1 CARROLL (M. A.)
A14 01      @1 National Center for Atmospheric Research @2 Boulder, Colorado @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 6 aut.
A14 02      @1 Service d'Aéronomie du Centre National de la Recherche Scientifique @2 Paris @3 FRA @Z 1 aut.
A14 03      @1 Belgian Institute for Space Aeronomy @2 Brussels @3 BEL @Z 5 aut.
A14 04      @1 Department of Atmospheric, Oceanic and Space Sciences, University of Michigan @2 Ann Arbor @3 USA @Z 7 aut.
A20       @1 28291-28335
A21       @1 1998
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000071948230210
A44       @0 0000 @1 © 1999 INIST-CNRS. All rights reserved.
A45       @0 3 p.1/4
A47 01  1    @0 99-0064510
A60       @1 P
A61       @0 A
A64   1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 In this second of two companion papers, we present results from a new global three-dimensional chemical transport model, called MOZART (model for ozone and related chemical tracers). MOZART is developed in the framework of the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM) and includes a detailed representation of tropospheric chemistry. The model provides the distribution of 56 chemical species at a spatial resolution of 2.8° in both latitude and longitude, with 25 levels in the vertical (from the surface to level of 3 mbar) and a time step of 20 min. The meteorological information is supplied from a 2-year run of the NCAR Community Climate Model. The simulated distributions of ozone (O3) and its precursors are evaluated by comparison with observational data. The distribution of methane, nonmethane hydrocarbons (NMHCs), and CO are generally well simulated by the model. The model evaluation in the tropics stresses the need for a better representation of biomass burning emissions in order to evaluate the budget of carbon monoxide, nitrogen species, and ozone with more accuracy in these regions. MOZART reproduces the NO observations in most parts of the troposphere. Nitric acid, however, is overestimated over the Pacific by up to a factor of 10 and over continental regions by a factor of 2-3. Discrepancies are also found in the simulation of PAN in the upper troposphere and in biomass burning regions. These results highlight shortcomings in our understanding of the nitrogen budget in the troposphere. The seasonal cycle of ozone in the troposphere is generally well reproduced by the model in comparison with ozone soundings. MOZART tends, however, to underestimate O3 at higher latitudes, and specifically above 300 mbar. The global photochemical production and destruction of ozone in the troposphere are 3018 Tg/yr and 2511 Tg/yr, respectively (net ozone production of 507 Tg/yr). The stratospheric influx of O3 is estimated to be 391 Tg/yr and the surface dry deposition 898 Tg/yr. The calculated global lifetime of methane is 9.9 years in the annual average.
C02 01  X    @0 001E02D04
C03 01  X  FRE  @0 Troposphère @5 26
C03 01  X  ENG  @0 Troposphere @5 26
C03 01  X  SPA  @0 Troposfera @5 26
C03 02  X  FRE  @0 Ozone @2 NK @2 FX @5 27
C03 02  X  ENG  @0 Ozone @2 NK @2 FX @5 27
C03 02  X  GER  @0 Ozon @2 NK @2 FX @5 27
C03 02  X  SPA  @0 Ozono @2 NK @2 FX @5 27
C03 03  X  FRE  @0 Précurseur @5 28
C03 03  X  ENG  @0 Precursor @5 28
C03 03  X  SPA  @0 Precursor @5 28
C03 04  X  FRE  @0 Modèle chimique @5 29
C03 04  X  ENG  @0 Chemical model @5 29
C03 04  X  SPA  @0 Modelo químico @5 29
C03 05  X  FRE  @0 Modèle 3 dimensions @5 30
C03 05  X  ENG  @0 Three dimensional model @5 30
C03 05  X  SPA  @0 Modelo 3 dimensiones @5 30
C03 06  X  FRE  @0 Phénomène transport @5 31
C03 06  X  ENG  @0 Transport process @5 31
C03 06  X  GER  @0 Transporterscheinung @5 31
C03 06  X  SPA  @0 Fenómeno transporte @5 31
C03 07  X  FRE  @0 Echelle planétaire @5 32
C03 07  X  ENG  @0 Planetary scale @5 32
C03 07  X  SPA  @0 Escala planetaria @5 32
C03 08  X  FRE  @0 Simulation numérique @5 33
C03 08  X  ENG  @0 Numerical simulation @5 33
C03 08  X  SPA  @0 Simulación numérica @5 33
C03 09  3  FRE  @0 Modèle climat @5 84
C03 09  3  ENG  @0 Climate models @5 84
N21       @1 032

Format Inist (serveur)

NO : PASCAL 99-0064510 INIST
ET : MOZART, a global chemical transport model for ozone and related chemical tracers.2. Model results and evaluation
AU : HAUGLUSTAINE (D. A.); BRASSEUR (G. P.); WALTERS (S.); RASCH (P. J.); MÜLLER (J.-F.); EMMONS (L. K.); CARROLL (M. A.)
AF : National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (1 aut., 2 aut., 3 aut., 4 aut., 6 aut.); Service d'Aéronomie du Centre National de la Recherche Scientifique/Paris/France (1 aut.); Belgian Institute for Space Aeronomy/Brussels/Belgique (5 aut.); Department of Atmospheric, Oceanic and Space Sciences, University of Michigan/Ann Arbor/Etats-Unis (7 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 1998; Vol. 103; No. D21; Pp. 28291-28335; Bibl. 3 p.1/4
LA : Anglais
EA : In this second of two companion papers, we present results from a new global three-dimensional chemical transport model, called MOZART (model for ozone and related chemical tracers). MOZART is developed in the framework of the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM) and includes a detailed representation of tropospheric chemistry. The model provides the distribution of 56 chemical species at a spatial resolution of 2.8° in both latitude and longitude, with 25 levels in the vertical (from the surface to level of 3 mbar) and a time step of 20 min. The meteorological information is supplied from a 2-year run of the NCAR Community Climate Model. The simulated distributions of ozone (O3) and its precursors are evaluated by comparison with observational data. The distribution of methane, nonmethane hydrocarbons (NMHCs), and CO are generally well simulated by the model. The model evaluation in the tropics stresses the need for a better representation of biomass burning emissions in order to evaluate the budget of carbon monoxide, nitrogen species, and ozone with more accuracy in these regions. MOZART reproduces the NO observations in most parts of the troposphere. Nitric acid, however, is overestimated over the Pacific by up to a factor of 10 and over continental regions by a factor of 2-3. Discrepancies are also found in the simulation of PAN in the upper troposphere and in biomass burning regions. These results highlight shortcomings in our understanding of the nitrogen budget in the troposphere. The seasonal cycle of ozone in the troposphere is generally well reproduced by the model in comparison with ozone soundings. MOZART tends, however, to underestimate O3 at higher latitudes, and specifically above 300 mbar. The global photochemical production and destruction of ozone in the troposphere are 3018 Tg/yr and 2511 Tg/yr, respectively (net ozone production of 507 Tg/yr). The stratospheric influx of O3 is estimated to be 391 Tg/yr and the surface dry deposition 898 Tg/yr. The calculated global lifetime of methane is 9.9 years in the annual average.
CC : 001E02D04
FD : Troposphère; Ozone; Précurseur; Modèle chimique; Modèle 3 dimensions; Phénomène transport; Echelle planétaire; Simulation numérique; Modèle climat
ED : Troposphere; Ozone; Precursor; Chemical model; Three dimensional model; Transport process; Planetary scale; Numerical simulation; Climate models
GD : Ozon; Transporterscheinung
SD : Troposfera; Ozono; Precursor; Modelo químico; Modelo 3 dimensiones; Fenómeno transporte; Escala planetaria; Simulación numérica
LO : INIST-3144.354000071948230210
ID : 99-0064510

Links to Exploration step

Pascal:99-0064510

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">MOZART, a global chemical transport model for ozone and related chemical tracers.2. Model results and evaluation</title>
<author>
<name sortKey="Hauglustaine, D A" sort="Hauglustaine, D A" uniqKey="Hauglustaine D" first="D. A." last="Hauglustaine">D. A. Hauglustaine</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Service d'Aéronomie du Centre National de la Recherche Scientifique</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Brasseur, G P" sort="Brasseur, G P" uniqKey="Brasseur G" first="G. P." last="Brasseur">G. P. Brasseur</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Walters, S" sort="Walters, S" uniqKey="Walters S" first="S." last="Walters">S. Walters</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rasch, P J" sort="Rasch, P J" uniqKey="Rasch P" first="P. J." last="Rasch">P. J. Rasch</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Muller, J F" sort="Muller, J F" uniqKey="Muller J" first="J.-F." last="Müller">J.-F. Müller</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Belgian Institute for Space Aeronomy</s1>
<s2>Brussels</s2>
<s3>BEL</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Emmons, L K" sort="Emmons, L K" uniqKey="Emmons L" first="L. K." last="Emmons">L. K. Emmons</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Carroll, M A" sort="Carroll, M A" uniqKey="Carroll M" first="M. A." last="Carroll">M. A. Carroll</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Atmospheric, Oceanic and Space Sciences, University of Michigan</s1>
<s2>Ann Arbor</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">99-0064510</idno>
<date when="1998">1998</date>
<idno type="stanalyst">PASCAL 99-0064510 INIST</idno>
<idno type="RBID">Pascal:99-0064510</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000254</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">MOZART, a global chemical transport model for ozone and related chemical tracers.2. Model results and evaluation</title>
<author>
<name sortKey="Hauglustaine, D A" sort="Hauglustaine, D A" uniqKey="Hauglustaine D" first="D. A." last="Hauglustaine">D. A. Hauglustaine</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Service d'Aéronomie du Centre National de la Recherche Scientifique</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Brasseur, G P" sort="Brasseur, G P" uniqKey="Brasseur G" first="G. P." last="Brasseur">G. P. Brasseur</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Walters, S" sort="Walters, S" uniqKey="Walters S" first="S." last="Walters">S. Walters</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rasch, P J" sort="Rasch, P J" uniqKey="Rasch P" first="P. J." last="Rasch">P. J. Rasch</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Muller, J F" sort="Muller, J F" uniqKey="Muller J" first="J.-F." last="Müller">J.-F. Müller</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Belgian Institute for Space Aeronomy</s1>
<s2>Brussels</s2>
<s3>BEL</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Emmons, L K" sort="Emmons, L K" uniqKey="Emmons L" first="L. K." last="Emmons">L. K. Emmons</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Carroll, M A" sort="Carroll, M A" uniqKey="Carroll M" first="M. A." last="Carroll">M. A. Carroll</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Atmospheric, Oceanic and Space Sciences, University of Michigan</s1>
<s2>Ann Arbor</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="1998">1998</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chemical model</term>
<term>Climate models</term>
<term>Numerical simulation</term>
<term>Ozone</term>
<term>Planetary scale</term>
<term>Precursor</term>
<term>Three dimensional model</term>
<term>Transport process</term>
<term>Troposphere</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Troposphère</term>
<term>Ozone</term>
<term>Précurseur</term>
<term>Modèle chimique</term>
<term>Modèle 3 dimensions</term>
<term>Phénomène transport</term>
<term>Echelle planétaire</term>
<term>Simulation numérique</term>
<term>Modèle climat</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this second of two companion papers, we present results from a new global three-dimensional chemical transport model, called MOZART (model for ozone and related chemical tracers). MOZART is developed in the framework of the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM) and includes a detailed representation of tropospheric chemistry. The model provides the distribution of 56 chemical species at a spatial resolution of 2.8° in both latitude and longitude, with 25 levels in the vertical (from the surface to level of 3 mbar) and a time step of 20 min. The meteorological information is supplied from a 2-year run of the NCAR Community Climate Model. The simulated distributions of ozone (O
<sub>3</sub>
) and its precursors are evaluated by comparison with observational data. The distribution of methane, nonmethane hydrocarbons (NMHCs), and CO are generally well simulated by the model. The model evaluation in the tropics stresses the need for a better representation of biomass burning emissions in order to evaluate the budget of carbon monoxide, nitrogen species, and ozone with more accuracy in these regions. MOZART reproduces the NO observations in most parts of the troposphere. Nitric acid, however, is overestimated over the Pacific by up to a factor of 10 and over continental regions by a factor of 2-3. Discrepancies are also found in the simulation of PAN in the upper troposphere and in biomass burning regions. These results highlight shortcomings in our understanding of the nitrogen budget in the troposphere. The seasonal cycle of ozone in the troposphere is generally well reproduced by the model in comparison with ozone soundings. MOZART tends, however, to underestimate O
<sub>3</sub>
at higher latitudes, and specifically above 300 mbar. The global photochemical production and destruction of ozone in the troposphere are 3018 Tg/yr and 2511 Tg/yr, respectively (net ozone production of 507 Tg/yr). The stratospheric influx of O
<sub>3</sub>
is estimated to be 391 Tg/yr and the surface dry deposition 898 Tg/yr. The calculated global lifetime of methane is 9.9 years in the annual average.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>103</s2>
</fA05>
<fA06>
<s2>D21</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>MOZART, a global chemical transport model for ozone and related chemical tracers.2. Model results and evaluation</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HAUGLUSTAINE (D. A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BRASSEUR (G. P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WALTERS (S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>RASCH (P. J.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MÜLLER (J.-F.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>EMMONS (L. K.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>CARROLL (M. A.)</s1>
</fA11>
<fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Service d'Aéronomie du Centre National de la Recherche Scientifique</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Belgian Institute for Space Aeronomy</s1>
<s2>Brussels</s2>
<s3>BEL</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Atmospheric, Oceanic and Space Sciences, University of Michigan</s1>
<s2>Ann Arbor</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>28291-28335</s1>
</fA20>
<fA21>
<s1>1998</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000071948230210</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 1999 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>99-0064510</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this second of two companion papers, we present results from a new global three-dimensional chemical transport model, called MOZART (model for ozone and related chemical tracers). MOZART is developed in the framework of the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM) and includes a detailed representation of tropospheric chemistry. The model provides the distribution of 56 chemical species at a spatial resolution of 2.8° in both latitude and longitude, with 25 levels in the vertical (from the surface to level of 3 mbar) and a time step of 20 min. The meteorological information is supplied from a 2-year run of the NCAR Community Climate Model. The simulated distributions of ozone (O
<sub>3</sub>
) and its precursors are evaluated by comparison with observational data. The distribution of methane, nonmethane hydrocarbons (NMHCs), and CO are generally well simulated by the model. The model evaluation in the tropics stresses the need for a better representation of biomass burning emissions in order to evaluate the budget of carbon monoxide, nitrogen species, and ozone with more accuracy in these regions. MOZART reproduces the NO observations in most parts of the troposphere. Nitric acid, however, is overestimated over the Pacific by up to a factor of 10 and over continental regions by a factor of 2-3. Discrepancies are also found in the simulation of PAN in the upper troposphere and in biomass burning regions. These results highlight shortcomings in our understanding of the nitrogen budget in the troposphere. The seasonal cycle of ozone in the troposphere is generally well reproduced by the model in comparison with ozone soundings. MOZART tends, however, to underestimate O
<sub>3</sub>
at higher latitudes, and specifically above 300 mbar. The global photochemical production and destruction of ozone in the troposphere are 3018 Tg/yr and 2511 Tg/yr, respectively (net ozone production of 507 Tg/yr). The stratospheric influx of O
<sub>3</sub>
is estimated to be 391 Tg/yr and the surface dry deposition 898 Tg/yr. The calculated global lifetime of methane is 9.9 years in the annual average.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001E02D04</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Troposphère</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Troposphere</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Troposfera</s0>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Ozone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Ozone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="X" l="GER">
<s0>Ozon</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Ozono</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>27</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Précurseur</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Precursor</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Precursor</s0>
<s5>28</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Modèle chimique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Chemical model</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Modelo químico</s0>
<s5>29</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Modèle 3 dimensions</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Three dimensional model</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Modelo 3 dimensiones</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Phénomène transport</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Transport process</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="GER">
<s0>Transporterscheinung</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Fenómeno transporte</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Echelle planétaire</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Planetary scale</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Escala planetaria</s0>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Simulation numérique</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Numerical simulation</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Simulación numérica</s0>
<s5>33</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Modèle climat</s0>
<s5>84</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Climate models</s0>
<s5>84</s5>
</fC03>
<fN21>
<s1>032</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 99-0064510 INIST</NO>
<ET>MOZART, a global chemical transport model for ozone and related chemical tracers.2. Model results and evaluation</ET>
<AU>HAUGLUSTAINE (D. A.); BRASSEUR (G. P.); WALTERS (S.); RASCH (P. J.); MÜLLER (J.-F.); EMMONS (L. K.); CARROLL (M. A.)</AU>
<AF>National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (1 aut., 2 aut., 3 aut., 4 aut., 6 aut.); Service d'Aéronomie du Centre National de la Recherche Scientifique/Paris/France (1 aut.); Belgian Institute for Space Aeronomy/Brussels/Belgique (5 aut.); Department of Atmospheric, Oceanic and Space Sciences, University of Michigan/Ann Arbor/Etats-Unis (7 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 1998; Vol. 103; No. D21; Pp. 28291-28335; Bibl. 3 p.1/4</SO>
<LA>Anglais</LA>
<EA>In this second of two companion papers, we present results from a new global three-dimensional chemical transport model, called MOZART (model for ozone and related chemical tracers). MOZART is developed in the framework of the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM) and includes a detailed representation of tropospheric chemistry. The model provides the distribution of 56 chemical species at a spatial resolution of 2.8° in both latitude and longitude, with 25 levels in the vertical (from the surface to level of 3 mbar) and a time step of 20 min. The meteorological information is supplied from a 2-year run of the NCAR Community Climate Model. The simulated distributions of ozone (O
<sub>3</sub>
) and its precursors are evaluated by comparison with observational data. The distribution of methane, nonmethane hydrocarbons (NMHCs), and CO are generally well simulated by the model. The model evaluation in the tropics stresses the need for a better representation of biomass burning emissions in order to evaluate the budget of carbon monoxide, nitrogen species, and ozone with more accuracy in these regions. MOZART reproduces the NO observations in most parts of the troposphere. Nitric acid, however, is overestimated over the Pacific by up to a factor of 10 and over continental regions by a factor of 2-3. Discrepancies are also found in the simulation of PAN in the upper troposphere and in biomass burning regions. These results highlight shortcomings in our understanding of the nitrogen budget in the troposphere. The seasonal cycle of ozone in the troposphere is generally well reproduced by the model in comparison with ozone soundings. MOZART tends, however, to underestimate O
<sub>3</sub>
at higher latitudes, and specifically above 300 mbar. The global photochemical production and destruction of ozone in the troposphere are 3018 Tg/yr and 2511 Tg/yr, respectively (net ozone production of 507 Tg/yr). The stratospheric influx of O
<sub>3</sub>
is estimated to be 391 Tg/yr and the surface dry deposition 898 Tg/yr. The calculated global lifetime of methane is 9.9 years in the annual average.</EA>
<CC>001E02D04</CC>
<FD>Troposphère; Ozone; Précurseur; Modèle chimique; Modèle 3 dimensions; Phénomène transport; Echelle planétaire; Simulation numérique; Modèle climat</FD>
<ED>Troposphere; Ozone; Precursor; Chemical model; Three dimensional model; Transport process; Planetary scale; Numerical simulation; Climate models</ED>
<GD>Ozon; Transporterscheinung</GD>
<SD>Troposfera; Ozono; Precursor; Modelo químico; Modelo 3 dimensiones; Fenómeno transporte; Escala planetaria; Simulación numérica</SD>
<LO>INIST-3144.354000071948230210</LO>
<ID>99-0064510</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000254 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000254 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:99-0064510
   |texte=   MOZART, a global chemical transport model for ozone and related chemical tracers.2. Model results and evaluation
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023